Ecmweb 2070 250 52a3 01web
Ecmweb 2070 250 52a3 01web
Ecmweb 2070 250 52a3 01web
Ecmweb 2070 250 52a3 01web
Ecmweb 2070 250 52a3 01web

Code Q&A

Dec. 22, 2011
Q. What are the Code requirements for a concrete-encased electrode?

Q. What are the Code requirements for a concrete-encased electrode?

A. A concrete-encased electrode must consist of at least 20 ft of either of the following [250.52(A)(3)], as shown in the Figure:

1) One or more of bare, zinc-galvanized, or otherwise electrically conductive steel reinforcing bars of not less than ½ in. diameter, mechanically connected together by steel tie wires, welding, or other effective means, to create a 20 ft or greater length.

2) Bare copper conductor not smaller than 4 AWG.

The reinforcing bars or bare copper conductor must be encased by at least 2 in. of concrete located horizontally near the bottom of a concrete footing or vertically within a concrete foundation that’s in direct contact with the earth.

If multiple concrete-encased electrodes are present at a building/structure, only one is required to serve as a grounding electrode.

Concrete containing insulation, vapor barriers, films, or similar items separating it from the earth isn't considered to be in "direct contact" with the earth.

The grounding electrode conductor to a concrete-encased grounding electrode isn't required to be larger than 4 AWG copper [250.66(B)].

The concrete-encased grounding electrode is also called a "Ufer Ground," named after a consultant working for the U.S. Army during World War II. The technique Mr. Ufer came up with was necessary because the site needing grounding had no underground water table and little rainfall. The desert site was a series of bomb storage vaults in the area of Flagstaff, Ariz. This type of grounding electrode generally offers the lowest ground resistance for the cost.

About the Author

Mike Holt

Mike Holt is the owner of Mike Holt Enterprises (www.MikeHolt.com), one of the largest electrical publishers in the United States. He earned a master's degree in the Business Administration Program (MBA) from the University of Miami. He earned his reputation as a National Electrical Code (NEC) expert by working his way up through the electrical trade. Formally a construction editor for two different trade publications, Mike started his career as an apprentice electrician and eventually became a master electrician, an electrical inspector, a contractor, and an educator. Mike has taught more than 1,000 classes on 30 different electrical-related subjects — ranging from alarm installations to exam preparation and voltage drop calculations. He continues to produce seminars, videos, books, and online training for the trade as well as contribute monthly Code content to EC&M magazine.

Voice your opinion!

To join the conversation, and become an exclusive member of EC&M, create an account today!

Continue Reading

Sponsored Recommendations

Electrical Conduit Comparison Chart

CHAMPION FIBERGLASS electrical conduit is a lightweight, durable option that provides lasting savings when compared to other materials. Compare electrical conduit types including...

Don't Let Burn-Through Threaten Another Data Center or Utility Project

Get the No Burn-Through Elbow eGuide to learn many reasons why Champion Fiberglass elbows will enhance your data center and utility projects today.

Considerations for Direct Burial Conduit

Installation type plays a key role in the type of conduit selected for electrical systems in industrial construction projects. Above ground, below ground, direct buried, encased...

How to Calculate Labor Costs

Most important to accurately estimating labor costs is knowing the approximate hours required for project completion. Learn how to calculate electrical labor cost.